| Issue Category | Policy/Concepts | Regulatory/
Legislative
Approaches | Incentives/
Investment/
Voluntary
Approaches | Education/
Communication | Research/
Monitoring/ Data
Collection | Planning/
Coordination | Other | |---|---|--|---|-----------------------------|--|--|-------| | Quality Issues | | | | | | | | | A. Groundwater Quality; Is Current Law Working? | Should the 1984
Groundwater Law
be revisited? | Establish different
model for regulatory
program | Provide grant money
to communities to
implement DNR
and/or EPA rules | educational | Collect more
toxicological data for
health advisories | Coordinate with
municipal water
suppliers in setting
and implementing
new water quality
standards | | | Groundwater
standards - How
well are they
working? | Is the groundwater
law already slowly
being chipped
away? (e.g., by
Aquifer Storage and
Recovery (ASR),
natural attenuation) | Set Enforcement
Standard where it
provides a warning
system | Recognize economic
impacts of adopting
groundwater
standards | | Establish inventories of chemical use to determine priorities for monitoring | | | | | Clarify policy for
applying a regulation
in non-traditional
sites (e.g. point of
standards
application for
Milwaukee Deep
Tunnels) | Require additional
standards for well
construction to
protect water quality | | | Correlate toxicity
levels to detection
ranges for
contaminants (what
levels are necessary
to protect human
and aquatic health
at reasonable cost) | | | | | Balance sound policy (science-based) with public perception (e.g. low detection levels that are possible now mean higher frequency of detection but not necessarily more contamination) | Enforce requirement
that all agencies are
to adopt
groundwater
standards for
programs | | | Research innovative well construction methods for certain contaminants (e.g. arsenic and nitrates) | | | | Issue Category | Policy/Concepts | Regulatory/
Legislative
Approaches | Incentives/
Investment/
Voluntary
Approaches | Education/
Communication | Research/
Monitoring/ Data
Collection | Planning/
Coordination | Other | |---------------------------------|---|---|--|--|---|--|-------| | | Recognize time lags
between
improvements in
water resources and
implementation of
changed
management
practices | implications of using public drinking water | | | Research on
alternatives to
chlorides in industry
and water treatment | | | | | Examine and improve security for groundwater supplies | Address
inconsistencies
between federal
drinking water
standards and state
NR 140 groundwater
standards | | | Need a better
understanding of
geochemical
processes | | | | B. "How Clean is
Clean?" | How clean does groundwater need to be? | Establish better
standards for clean
up (remediation)
sites | Seek better ways to
fund clean up efforts
(or make more
affordable) | | Assess what is successful (clean up strategies, natural attenuation). | Need better
coordination
between DNR
groundwater and
remediation staff in
closing
contaminated sites | | | Remediation and clean-up issues | Should the issue of aquifer classification be revisited? | Address issue of persistent contaminants (e.g. DNAPLs) | Evaluate whether clean up of organics can be done cost effectively | Communicate:
Groundwater
standards work well
now. | Evaluate clean up
strategies. Are sites
being cleaned up? Is
groundwater quality
improving? | | | | | Consider some degradation of the resource to solve other environmental problems. | Address long term
maintenance of
protection systems
(e.g. landfill liners) | Use PECFA fund to
clean up sites rather
than engineering
studies (better use
of money) | Communicate:
Remediation takes a
long time | , - 0- | | | | Issue Category | Policy/Concepts | Regulatory/
Legislative
Approaches | Incentives/
Investment/
Voluntary
Approaches | Education/
Communication | Research/
Monitoring/ Data
Collection | Planning/
Coordination | Other | |---|---|--|--|--|---|---|-------| | | Recognize time lags
between
improvements in
water resources and
implementation of
changed
management
practices | | | | | | | | C. "Chemical Soup
Syndrome" | | Revisit the synergistic effects of contaminants when setting standards | | | Look at cumulative effects of contaminants on human health and other organisms | Address management of cumulative effects across agency lines (because each agency sets their own approach). | | | Multiple and cumulative effects | Recognize difficulty in developing a management strategy across contaminant types. | | | | | | | | D. Emerging
Contaminants | Find solutions to
arsenic
contamination
problems | Need groundwater
standards for
pharmaceuticals | Provide assistance
to small
communities to
meet arsenic and
radium standards | Communicate relative risks of different contaminants (e.g. arsenic compared to benzene). | Identify existing data, perform statewide surveys on pharmaceuticals, pathogens, and natural contaminants | | | | Total dissolved
solids (TDS),
radionuclides,
arsenic | Address natural radioactivity in groundwater | Regulate disposal of
water/wastewater
sludge contaminated
by arsenic and
radioactivity | | Compare risk between manmade and naturally-occurring contaminants | Research cause of increased radioactivity in the deep aquifer in SE Wisconsin | | | | Issue Category | Policy/Concepts | Regulatory/
Legislative
Approaches | Incentives/
Investment/
Voluntary
Approaches | Education/
Communication | Research/
Monitoring/ Data
Collection | Planning/
Coordination | Other | |---|---|--|--|---|---|---------------------------|-------| | Pharmaceuticals
and endocrine
disrupters | "Is it the State's job
to protect people
from natural
contaminants?" | Enact regulations to prevent "new" contaminants from being introduced into the water supply. | | | Research on "new" contaminants and preventing "new" contaminants from reaching the water supply/groundwater. | | | | | Address nuisance
microorganisms like
iron and sulfur
bacteria | Ensure that new
standards or rules
are supported by
toxicological data | | | Need ability to
detect/quantify
emerging
contaminants and
medical conditions
related to drinking
water quality (e.g.
many people in an
area with same
illness) | | | | E. Agricultural Impacts | How to balance current food policies (inexpensive food/profit on volume) with groundwater protection? | Should nitrate in groundwater be regulated? e.g. restrictions on private wells | Encourage more farmers to adopt N management | Provide more information to farmers about N crediting | Identify and track
constituents
contributing to
nonpoint source
pollution (N and P) | | | | (Nonpoint sources, pesticides, and fertilizers) | Develop nitrate policy; address nitrate contamination issues | Enact & enforce "laws with teeth" | Require non-potato crop in affected areas | Promote public
health and education
for rural residents | Develop methods to determine source of N contamination | | | | | Make
use of pesticide use/impacts database | Address nitrate exemptions in current codes | Provide cost-sharing
for reducing nitrate
levels | nitrate | Identify technology
solutions for
reducing nitrate
pollution | | | | Issue Category | Policy/Concepts | Regulatory/
Legislative
Approaches | Incentives/
Investment/
Voluntary
Approaches | Education/
Communication | Research/
Monitoring/ Data
Collection | Planning/
Coordination | Other | |--|--|--|---|--|--|---------------------------|-------| | | | Clarify who has authority to regulate nitrate | Find relatively easy
solutions such as
composting potato
vines to reduce N
leaching. | Promote the proper use of fertilizers and pesticides | Monitor quality of rural water every 5 years. | | | | | | Evaluate implications of Food Quality Protection Act on groundwater regulations | Provide incentives
for crop rotations to
decrease nitrate
levels in
groundwater. | | Evaluate nitrogen
and phosphorus
application rates -
are they too high? | | | | | | | | | Evaluate impact of nitrate in groundwater on aquatic ecosystems. | | | | | | | | | Evaluate leaching over whole rotation not just one crop. | | | | F. Wastewater Treatment and Land Application | Does COMM 83 (onsite wastewater treatment system code) allow too much contamination? | Enforce existing
standards and other
laws (holding tank
pumping) | Provide direction on
"economic and
technical feasibility
exemptions" with
regard to NR140
standards as applied
to wastewater
disposal. | | Research on the
effect of anti-
bacterial soaps on
septic systems | | | | | Address inadequate protection of sensitive areas (example Door Co.) | Set effluent
limitations for point
source discharges to
disappearing
streams and other
karst features | | | Develop a better
understanding of
microbial pathogens | | | | | Does land-applied wastewater result in pathogens finding way into groundwater? | | | | Perform more
frequent testing of
private wells for
bacteria and nitrate | | | | Issue Category | Policy/Concepts | Regulatory/
Legislative
Approaches | Incentives/
Investment/
Voluntary
Approaches | Education/
Communication | Research/
Monitoring/ Data
Collection | Planning/
Coordination | Other | |--|---|--|---|---|---|---|--| | G. Wellhead Protection and Source Water Assessment | Encourage protection of groundwater recharge areas Address the loss of undeveloped land which has attenuative properties | Expand power of municipalities to protect Source Water Protection Areas Require regular inspection of wellhead protection/source water areas Implement local to regional well prohibitions in bad water quality areas | | | | Address issue of overlapping jurisdictions with regard to drinking water protection Explore ways to protect water supply when wellhead protection areas extend outside city limits Make sure planning commissions are aware of Source Water Assessment program designation | | | Quantity Issues | | | | | | of local "problem"
areas | | | H. Groundwater
Quantity - General | Determine goals of "quantity strategy" (e.g. restoration of water level and baseflow) | Is legislative or political process ready to deal with quantity regulations? | Assess where money come from to pay for changes | Target education for
Legislators | Base groundwater
quantity strategy on
best available
science | Explore collaborative approaches between industry and government | | | Is there a need for
statewide
groundwater
strategy? | Is there consensus
on the need to
change, or can it be
reached? | Develop laws to
address water
quantity issues in
Wisconsin | Establish funding mechanism for groundwater quantity management | Educate public to
understand
concepts involved
and to minimize
emotional aspects of
issue (e.g. water use
by Perrier vs. some
farming operations
vs. beer production) | | Use data and groundwater flow models to predict trends, communicate with community leaders, planners, regulators, citizens | Recognize that
groundwater levels
have risen in some
areas (e.g., parts of
Dane Co.) | | Issue Category | Policy/Concepts | Regulatory/
Legislative
Approaches | Incentives/
Investment/
Voluntary
Approaches | Education/
Communication | Research/
Monitoring/ Data
Collection | Planning/
Coordination | Other | |----------------|--|---|---|--|---|--|---| | | Assess whether water quantity should be addressed comprehensively or case by case | Assess whether opening up the groundwater law to add quantity would weaken it | Promote incentives and cooperation efforts, not command and control | Provide continuing education for professionals and industries using water | Determine how
mining of resource
diminishes supply | Compare local solutions to groundwater quantity problems vs. regional solutions. | Address population growth in water-short areas | | | Need for "multifaceted" approach - planning, education, laws, research, etc. in dealing with groundwater quantity problems | Establish Preventive
Action Limit (PAL)
process for water
quantity. | Acknowledge
economic
advantages to those
who do nothing if
others take action
(e.g., to move to
surface water
sources) | Develop technical
education program
and take around
state to local
officials. Emphasize
benefits of action -
not all bad news. | Research other
states/nations
solutions to
groundwater
quantity problems,
including jurisdiction
and legal issues | Focus water quantity efforts in areas where groundwater is being depleted. | Seek trust and cooperation among all the parties to solve quantity problems | | | Should water quantity policies be applied to the entire aquifer or only recharge areas? | Reorganize DNR
along groundwater
aquifer boundaries | | Improve public's understanding of connection between groundwater use and groundwater recharge | Collect data on water use, exportation, and wastewater discharges | Address issues on a comprehensive basis rather than case by case | Set clear goals for quantity strategy | | | Add quantity issue to the quality strategy being used statewide. | Strengthen water use reporting process to provide evidence for action | | | Develop statewide
groundwater flow
models; build on
existing local and
regional ones | Need for "joint
management" in
areas with
groundwater
quantity problems | | | | Need to prioritize limited groundwater resources | | | | Check public sentiment regarding how much groundwater withdrawal they are willing to tolerate | Make use of regional planning commissions and Smart Growth laws to address quantity management | | | Issue Category | Policy/Concepts | Regulatory/
Legislative
Approaches | Incentives/
Investment/
Voluntary
Approaches | Education/
Communication | Research/
Monitoring/ Data
Collection | Planning/
Coordination | Other | |--------------------------|---|--|---|---|---
--|-----------------------------| | | Develop a
mechanism/ strategy
to avoid western US
style water wars | | | | Define what a groundwater quantity problem is. | Need for flexible
approach to deal
w/groundwater
quantity problems -
needs to be able to
work at different
levels: local,
regional, state,
national,
international; within
"problemshed" | | | I. Competing Water | Need more | Set targets for water | | Provide education | Need data on | Use regional | Need for dispute | | Uses & Water | protection of private | use dependent on | | on groundwater | current water use | approach to water | resolution for | | Supply Needs | wells from pumping by municipal wells | industry . | | principles - dispel
the safe yield myth. | | use | competing groundwater users | | | Assess different requirements for siting new wells vs. replacing existing ones | Allocate water based
on "best use" - but
who will decide? | | Improve public
awareness of the
impact of water use | Determine where
water supply
problems exist and
where they do not | Prioritize among the competing demands for water | | | | Develop a comprehensive groundwater use strategy. | Develop rules to determine how to balance the competing water needs given the scarce resources | | | Require all users to report water use as municipalities currently do | Base water use on
"first come, first
serve" or equal
sharing? | water: | | | Define "consumptive use" relative to economic development. | | | | | | | | J. Water
Conservation | Promote water
conservation (the
need to use less
water & use water
more wisely) | Enact legislation to require water conservation | Change municipal water pricing policies to encourage conservation | Proactive education on water conservation. | Gather information
about and make use
of successful water
conservation
strategies | Target areas for water conservation (e.g. urban areas) | | | Issue Category | Policy/Concepts | Regulatory/
Legislative
Approaches | Incentives/
Investment/
Voluntary
Approaches | Education/
Communication | Research/
Monitoring/ Data
Collection | Planning/
Coordination | Other | |--|---|--|--|--|--|---|-------| | Individual homes,
businesses,
communities. | Balance use vs. conservation in a working landscape. | Freeze (water use)
levels at today's
numbers. | Provide tax
incentives to large
water users to
encourage
conservation | Target hospitality industry (hotels, restaurants, etc.) | Measure impact conservation messages are having. | Ensure internal consistency of agencies and conservation policy with respect to economic development vs. water use. | | | | Foster leadership on conservation issues | Enforce conservation policy on the books. | Use water bills/cost
to encourage water
conservation at
residential level | Involve local Health
Department in
helping users learn
to conserve. | Determine benefits
and limits of water
conservation
(highest and lowest
attainable). | | | | | Need for changes in
public water use to
conserve water | Enact regulation of industry to ensure they are not wasting water | Make more funds
available for water
conservation efforts | Increase education/
awareness of use
and ways to
conserve (especially
important during
"drought" periods) | Collect information
on high rate use of
water (like lawn
watering & other
practices) | | | | K. High Capacity
Wells | How to prioritize water withdrawal? | Create legal tools to
regulate high
capacity pumping
(e.g. farm, resort
wells) | It can be expensive
to show no impact -
can municipalities
afford it? | | Develop a standard
to define no adverse
impact | | | | Location/permitting
of hi-cap wells | Recognize that only
a handful of well
applications each
year potentially have
an adverse impact | Create legislation to regulate groundwater | Establish fee
structure per volume
used as part of
permitting for high
cap wells | | Collect data on amount of water being pumped from high capacity wells. | | | | | Should the burden
be on new water
users to show no
adverse impact? | Clarify DNR policy
on high-cap wells
(relationship to
quantity issues) | | | Need to understand
the impact of high
capacity wells on
biological resources | | | | Issue Category | Policy/Concepts | Regulatory/
Legislative
Approaches | Incentives/
Investment/
Voluntary
Approaches | Education/
Communication | Research/
Monitoring/ Data
Collection | Planning/
Coordination | Other | |--------------------------------------|---|---|--|--|--|--|-------| | | Look beyond capacity problems created by individual high-capacity permit seekers. | | | | Perform site
evaluations on high-
cap wells. | | | | | Recognize that
different users have
different impacts
(e.g., one may
discharge to a
stream another
loses water as
steam) | Limit number of irrigation wells. | | | | | | | | Evaluate agricultural practices (Overproduction of vegetables?). | | | | | | | | L. Water Rate Structures and Pricing | Change municipal water pricing policies to encourage conservation | Set rate structures
on statewide water
conservation
policy/legislation | Alter PSC rate
structures to
promote less use,
but should not be
uniform statewide | Educate PSC and staff to appreciate the need to address water quantity issues. | Research on commodification of water where appropriate | Form transition plan for implementing new rate structures. | | | Issue Category | Policy/Concepts | Regulatory/
Legislative
Approaches | Incentives/
Investment/
Voluntary
Approaches | Education/
Communication | Research/
Monitoring/ Data
Collection | Planning/
Coordination | Other | |-----------------|--|--|--|--|---|---------------------------|-------| | | Reevaluate Public
Service Commission
(PSC) rates -
(currently "Use More
Pay Less"
mentality). | Distinguish between "Newcomers" (who benefit from excess capacity of the water supply system) and "Long Time Users" in setting rates (e.g. Newcomers could pay a special "user fee" in order for municipality to recuperate initial investment and pass savings onto long- time users) | Evaluate possible
fee sources- new
users, new wells,
abandonment fees | | Measure: Who will
be affected by price
structure changes
and how? | | | | M. Groundwater | Use regional or | Address loss of | | Improve public's | Study impacts of | | | | <u>Recharge</u> | watershed approach
to address problems
with regional
groundwater
recharge | | | understanding of
connection between
groundwater use
and groundwater
recharge | using urban runoff to
increase
groundwater
recharge | | | | | Encourage protection of groundwater recharge areas | | | | Research on
recharge area needs
to preserve stream
baseflow | | | | | Develop a process for protection of headwater areas | | | | Research on
recharge strategies
in deficient areas,
other than rebound
by not pumping | | | | Issue Category | Policy/Concepts | Regulatory/
Legislative
Approaches | Incentives/
Investment/
Voluntary
Approaches | Education/
Communication | Research/
Monitoring/ Data
Collection | Planning/
Coordination | Other | |---|---|---|---|--
--|--|-------| | N. Great Lakes Withdrawal/ Interbasin Transfers | Prevent loss of
Great Lakes water
through diversion | Evaluate how International Law/Agreements may supersede State or Local laws in regards to water withdrawals | | | Determine statewide
groundwater budget
(current in-state use
vs. out-of-state use
and likely future
trends) | | | | | Prevent loss of groundwater sent out of state | Interbasin water transfer: restriction, prohibition or mitigation? | | | Investigate impacts of water exportation. | | | | | Use standard Great
Lakes withdrawal
process for other
areas | Make sure our laws protect groundwater from being sold as a commodity | | | | | | | O. Efficiency of Water Systems | Fix leaks (in distribution system and/or homes) to reduce losses and improve efficiency | Set targets to reduce leaks. | Develop a process
to provide incentives
for leak repairs
(similar to those
used in agriculture) | Target
municipalities,
users,
commercial/industria
l/private | Measure the relative contributions to cumulative leaks (e.g. water main leaks vs. leaks at the house/building; water main breaks, cleaning). | Involve local water utility to help identify problems in losing water. | | | | | Measure cumulative leaks with pumping and metered numbers. | | Messages:
Worthwhile
economically and
environmentally. | Find out if somebody
has already done
this research
(WCWA/AWWA) | | | | | | | | Measure success -
did the message
inform the
audience/move
them to action? | Investigate technology of how to fix the leaks. | | | | Quality and
Quantity | | | | | | | | | Issue Category | Policy/Concepts | Regulatory/
Legislative
Approaches | Incentives/
Investment/
Voluntary
Approaches | Education/
Communication | Research/
Monitoring/ Data
Collection | Planning/
Coordination | Other | |--|---|--|--|---|---|---|-------| | P. Groundwater Management (Quality and Quantity) | Recognize differing needs of humans and environment in terms of groundwater protection | Integrate
groundwater
quantity and quality
management within
one agency (DNR) | Need more funding
(at all levels) to deal
with both water
quality and quantity
issues in Wisconsin | Improve
understanding of
groundwater
systems | Characterize the quality and quantity concerns for Wisconsin's groundwater. | Political boundaries impede collaboration in groundwater. | | | | Develop a process to deal with expected and unexpected groundwater quality and quantity issues. | Apply regulations and standards consistently among agencies responsible for groundwater protection. | Seek creative
sources of additional
revenue for
groundwater
management (e.g.,
Groundwater
Guardian to pay for
well abandonment) | Improve general public's understanding of groundwater encourage better decision making | Improve
understanding of
groundwater flow,
travel/lag times | Examine
administration of
groundwater
regulation and
coordination among
agencies | | | | Avoid basing policy on just one issue only, it must be comprehensive | Explore ways to resolve intergovernmental conflicts over groundwater issues statutorily | Consider the | Improve method of providing private well owners and drillers with information regarding water quality and quantity. | Determine value of
groundwater
resource relative to
economic value of
use - limits? | Work at state,
national and
international levels
for coordination of
groundwater
protection and use. | | | | Invoke the precautionary principle when data is not available | Address historical and cultural significance in DNR regulations (tribal considerations). | Promote "Cooperative Compliance" - working with regulated community to make informed economic decisions based on science. | Use groundwater
models and water
budgets as an
effective educational
tool | | | | | | Consider equity in quality and quantity issues | Clarify who should
bear the burden of
proof as to whether
an activity causes
harm to groundwater
resource | | Target education for local politicians and Legislators (seminars, informational packets) | | | | | Issue Category | Policy/Concepts | Regulatory/
Legislative
Approaches | Incentives/
Investment/
Voluntary
Approaches | Education/
Communication | Research/
Monitoring/ Data
Collection | Planning/
Coordination | Other | |--|---|--|--|--|--|--|-------| | | Determine if it's better to increase groundwater quality at the expense of quantity or vice versa | Enforce current codes. | | Promote
groundwater
education through
electronic media
(e.g. "Into the
Outdoors" TV
program) | | | | | | Recognize long-term
nature of issues -
areas not
experiencing
problems today may
have problems
tomorrow | Build enforcement into new laws | | Educate community
leaders first
regarding
groundwater
problems and
possible solutions | | | | | | Consider how groundwater protection is prioritized among other policy and financial needs | | | Educate the public
about groundwater
as a working
resource - used by
industry, public
water systems,
agriculture, etc. | | | | | Q. Impacts of
Withdrawals on
Quality | Evaluate whether over-pumping may cause irreversible changes to water quality | | Optimize pumping to reduce TDS and radioactivity in groundwater | | Study geochemical changes (hydraulic connection and mixing between aquifer units) as result of major cones of depression statewide | Explore use of small
cluster wells to
provide communities
with water rather
than deep wells with
poor water quality | | | | | | | | Need more study on impacts of mining withdrawals | Balance quality needs vs. quantity needs. | | | R. Groundwater/
Surface Water
Interactions | Manage
groundwater and
surface water
together (DNR
structural changes?) | Include
interconnectedness
of surface water and
groundwater in
groundwater law
(purpose section). | Consider cost of moving wells to preserve quantity for streams, springs. | Draw connections
between
groundwater
quantity issues and
ecological effects. | Increase funding for
research on
groundwater/
surface water
interactions | | | | Issue Category | Policy/Concepts | Regulatory/
Legislative
Approaches | Incentives/
Investment/
Voluntary
Approaches | Education/
Communication | Research/
Monitoring/ Data
Collection | Planning/
Coordination | Other | |--|--|---|--|--|--|---|-------| | Impacts of
withdrawals on
surface waters | Use surface water to take pressure off aquifers | Establish regulations
to protect wetlands
and wildlife habitat
from groundwater
withdrawals | | Demonstrate
interrelated nature of
surface and
groundwater | Develop ways to
estimate the quantity
of water that can be
withdrawn without
impacts on
environment | | | | | How can society's water needs be met without adverse impacts on surface waters that provide quality of life? | | | | Research on aquatic
habitat issues -
groundwater inputs
to cold water trout
streams | | | | | | | | | Research how infiltration prevents thermal contamination of surface water | | | | S. Land Use and
Development | Address conflict
between new
development and
protection of
recharge areas and
water quality | Require permits for private well installation as part of land use planning | Promote use of "conservation" subdivisions (clustered homes w/greenspace between clusters) | Use "lack of planning" case studies as educational tools | Develop tools to
help local
communities protect
their water supplies
via Smart Growth | Take advantage of
the opportunity
provided by Smart
Growth to address
groundwater
protection | | | Smart Growth | Address water supply needs and | Consider community growth restrictions to protect groundwater (example Boulder, CO green belt) - although this could contribute to increased urban sprawl | Create incentives for compliance with (advisory) land use plans | Educate local
planning committees
and water utilities
about water supply
provisions of Smart
Growth plans | surface water) | Recognize limits to
Smart Growth
planning (limited to
local areas;
incompatibility of
plans in dealing with
regional problems;
differing regulations
along jurisdictional
borders; "long" time
(10 yr) for
implementation) | | | Issue Category | Policy/Concepts | Regulatory/
Legislative
Approaches | Incentives/
Investment/
Voluntary
Approaches | Education/
Communication | Research/
Monitoring/ Data
Collection | Planning/
Coordination | Other | |---|--|---|---|-----------------------------|---|--|-------| | | Recognize that land
use patterns must
change if start using
shallow aquifers for
water supply | Create legal
mechanism to
prohibit extraction of
groundwater for
private water
supplies in areas
where development
density is high | | | Document the effects of urban sprawl and rural development on groundwater | Make compliance
with land use plans
compulsory | | | | Reduce runoff and
soil erosion. Soil
conservation
practices will
address quality and
quantity issues. | Require a public water supply system for intense development (certain threshold)-make this a condition of new development | | | Research on the loss of groundwater recharge areas in the state | Give planning
commissions
authority over sewer
extensions | | | | Address the loss of undeveloped land which has attenuative properties | Adopt zoning to protect land from development, urban sprawl and highway related contamination | | | | Minimize unsound land use such as subdivisions outside city service areas. | | | | Improve forestry practices to address quality and quantity issues (e.g. trees spaced out or preventing removal from watersheds). | Ensure legislation is fair to developers | | | | | | | | Achieve balance
between land use
for farming or
preservation and
development | | | | | | | | T. Aquifer Storage
and Recovery
(ASR) | Consider using ASR to balance seasonal variation in surface water resources. | Should injection well prohibition be sustained? | | | Need ASR studies,
legal and
geochemical
implications | | | | Issue Category | Policy/Concepts | Regulatory/
Legislative
Approaches | Incentives/
Investment/
Voluntary
Approaches | Education/
Communication | Research/
Monitoring/ Data
Collection | Planning/
Coordination | Other | |---------------------------|--|---|--|---|--|--|--| | | Aquifer storage may improve quantity but compromise quality. | | | | Need more research
on ASR before it
should be allowed in
WI | | | | U. Water Reuse | Use recycled wastewater to | Review wastewater disposal and | Encourage use of recycled water with | | Compile best management | | | | and Recycling | recharge groundwater for both domestic and community use. | treatment rules to | incentives | | practices for companies practicing re-use of recycled water. | | | | Other | | | | | | | | | V. Regional
Approaches | Change from management by political boundary to a regional or watershed approach | | Help communities learn about regionalization benefits. Precedent for cooperation not always there. | Educate public that water is a regional planning issue | Find solutions for regional water shortages | Need regional or
basin-wide planning
for distribution and
well development. | How will SMART growth deal with this issue? | | | Scale of solution
must match scale of
problem | Delegate a permitting authority to DNR basin groups. | Determine costs of regional cooperation | Educate local and regional government officials; citizens (they can put pressure on public officials to act). | Research on protocol for cooperation among jurisdictional entities | Develop regional
water supply plan to
establish who will
use what sources
and set pumping
schedule. | Need a longer-term perspective | | | Water districts
needed with local
commitments - can't
opt out after
commitment | Water Management
Districts - who would
broker the needs? | | Education on where we have water. | Delineate
groundwater basins -
do they coincide with
surface water
basins? | Create mechanism
for planning/
coordination beyond
local level (but
"below" state level) | Create an environment that encourages (mandates?) regional cooperation | | | Create regional guidance to assist with water quantity issues | Tie regional water
plans to state
permitting
requirements, like
sewer plans | | | Develop regional hydrological models. | Share resources
between
jurisdictional
boundaries (e.g.
wells, treatment,
distribution) | Develop consensus
between affected
communities | | Issue Category | Policy/Concepts | Regulatory/
Legislative
Approaches | Incentives/
Investment/
Voluntary
Approaches | Education/
Communication | Research/
Monitoring/ Data
Collection | Planning/
Coordination | Other | |---------------------------|---|--|---|-----------------------------|--|--|-------| | | Need to define
"regional" | Strengthen authority of regional water authorities. | | | Compile data and statistics on regional aquifer capacity | Need for creative
approaches to
regional planning for
groundwater use to
prevent tragedy of
the commons. | | | | Empower regional planning commissions (e.g. allow them to determine where new high water use industries will be located - to prevent local communities from competing for these businesses) | Institutional question
on how decisions
will be made. Who
referees equity? | | | Demonstrate how regionalism could better affect quality and quantity management of the groundwater resource (cost/benefit analysis; case studies; scenarios) | Use required provision of Smart Growth plans to develop strategy to handle intergovernment conflicts | | | | Integrate agricultural drainage districts into regional management issues | Establish legal
framework to ensure
regional
cooperation/solution | | | | Need environmental
and industry groups
represented as well
as local
governments. | | | | | Create legal,
regulatory provisions
to protect
groundwater at
regional level | | | | Get buy-in from the
proper authorities
before proceeding
with a regional
management
approach | | | W. "Whose Water
Is It? | Clarify water rights w/ respect to groundwater: who has the right to access groundwater? | Expand Public Trust
Doctrine to include
groundwater
specifically | | | | Should private landowners rights be preserved regarding use of groundwater even if a public utility is formed in the area? | | | Issue Category | Policy/Concepts | Regulatory/
Legislative
Approaches | Incentives/
Investment/
Voluntary
Approaches | Education/
Communication | Research/
Monitoring/ Data
Collection | Planning/
Coordination | Other | |---|--|--
---|---|---|---|--| | | Groundwater should
not be dealt with as
a private property
right – transcends
political boundaries
and property | Make sure our laws
protect groundwater
from being sold as a
commodity | | | | | | | | Address abuse of groundwater use: private property right vs. neighbor's or public's rights | Define who owns the groundwater. | | | | | | | X. Research | Establish a body to | Use sound science | Explore ways to fund | Educate public and | Identify other states' | Who should direct | | | Support | set research priorities | in setting policy and | basic data gathering and research | | efforts in regards to groundwater research | and coordinate research? Should it be the GCC? | | | | Make sure that researchers can do research that is unbiased and not influenced by outside interests | | Improve focus of
Groundwater
Research Advisory
Council (GRAC)
funding to look at
longer term issues,
not just "hot" issues. | Ensure that education is scientifically motivated. | | Improve
coordination
regarding research
findings | | | | Encourage implementation of research findings | | | Communicate objective of data sharing | | | | | Y. Monitoring and
Data Management
Systems | Policy should drive data collection needs | | Provide funding for baseline groundwater monitoring | Improve information
and education
programs for private
well monitoring | Promote long-term monitoring to determine statistical trends. | Consider time lag
between problems
and observing the
impact in monitoring
network | Take advantage of technology to organize and use available data. | | Issue Category | Policy/Concepts | Regulatory/
Legislative
Approaches | Incentives/
Investment/
Voluntary
Approaches | Education/
Communication | Research/
Monitoring/ Data
Collection | Planning/
Coordination | Other | |--------------------------|---|---|---|--|--|--|-------| | | Establish a comprehensive groundwater monitoring strategy on a multi-year basis | | Fund maintenance
and improvements
to monitoring
network (gaging
stations and wells) | Communicate objectives of data systems | Collect background data on streamflows and groundwater levels. | Improve accessibility
and utility of
groundwater data
systems ("data rich,
information poor") | | | | Establish a comprehensive program for testing private wells | | | | Address long term management of records | | | | Z. Building a | Promote and foster | Need legislative | | Clearly articulate | | GCC should take a | | | Groundwater Constituency | leadership on
groundwater issues | leaders who are motivated and understand the science. | | need for
sustainability of
groundwater
resource | | position on issues. | | | | "Water for Wisconsin Forever": Combine education/research/ policy efforts. Market to public and governor's office. Mobilize environmental groups. Recognize ethical responsibility to future generations to be wise stewards in | Need strong advocate for the public interest not influenced by political pressure "There should be more lobbyists to speak for the private sector" | | Educate the public to be aware of groundwater issues and to push for groundwater legislation Be proactive but recognize crisis mentality of public. Convey sense of | | Education at local level now possible; concerned citizens can educate themselves or hire experts to educate them, and pass this information on to local government decision makers How to educate when there are disagreements about scope of | | | | protecting our groundwater resource Develop leadership by the environmental | "Resource agencies should provide | | urgency. Clearly educate public about goals | | problem | | | | community on these issues | information, not advocacy." | | | | | |